
Uncertainty Analysis and Robust Design of Low-Boom

Concepts using Atmospheric Adjoints

Sriram K. Rallabhandi ∗

National Institute of Aerospace, Hampton, VA, 23666

Thomas K. West† and Eric J. Nielsen‡

NASA Langley Research Center, Hampton, VA, 23681

This paper seeks to quantify the uncertainty associated with atmospheric conditions
when propagating shaped pressure disturbances due to a low-boom supersonic aircraft. A
discrete adjoint formulation is used to obtain sensitivities of the boom metrics to atmo-
spheric inputs such as temperature, wind, and relative humidity distributions in addition
to deterministic inputs such as the near-field pressure distribution. This study uses a poly-
nomial chaos theory approach to couple these adjoint-derived gradients with uncertainty
quantification to enable robust design by using gradient-based optimization techniques. The
effectiveness of this approach is demonstrated over an axisymmetric body of revolution. Re-
sults show that the mean and standard deviation of sonic boom loudness are simultaneously
reduced using robust optimization. Unlike the conventional optimization approaches, the
robust optimization approach has the added benefit of generating probability distributions
of the sonic boom metrics.

Nomenclature

α Deterministic coefficient in the polynomial chaos expansion
β 1 + γ−1

2
βn Lagrange multiplier for absorption
χ Non-dimensional distance
δ Truncation error
ε Wind effect on ray acoustics
η Non-dimensional longitudinal location
Γ Non-dimensional thermo-viscous parameter
γ Ratio of specific heats, 1.4
γ0,n Lagrange multiplier for nitrogen relaxation
γ1,n Lagrange multiplier for oxygen relaxation
λn Lagrange multiplier for nonlinearity
µ Mean
φ Azimuthal angle for propagation
Ψ Random basis function
ρ Atmospheric density
ρh Density at an arbitrary location along the ray
σ Standard deviation
θν,1−2 Non-dimensional relaxation time parameters
ξ Standard input random variable
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c Speed of sound
Cν,1−2 Non-dimensional dispersion
ch Speed of sound at an arbitrary location along the ray
D Vector of design variables
G Ray tube area
h Altitude at an arbitrary location along the ray
Hi Input altitudes of atmospheric temperature profile
J Objective function
JN Non-deterministic objective function
kn Scaling factor due to ray-tube spreading and stratification
L Lagrangian
M Cruise Mach number
m percent mole fraction of water vapor in air
n Number of random dimensions
NTP Number of test points
Ns Number of samples
Nt Number of terms in a total-order polynomial chaos expansion
nh Number of atmospheric profile altitude, relative humidity pairs
nt Number of atmospheric profile altitude, temperature pairs
nwx Number of atmospheric profile altitude, X-wind pairs
nwy Number of atmospheric profile altitude, Y-wind pairs
p Pressure waveform during propagation
P Number of output modes
Ph Pressure at an arbitrary location along the ray
Psat Saturation vapor pressure
q, r, t Intermediate pressure waveforms
R Gas constant, 287.26 J/KgK
RHi Input relative humidities of atmospheric humidity profile
s Order of polynomial expansion
Th Temperature at an arbitrary location along the ray
Ti Input temperatures of atmospheric temperature profile
U Atmospheric variables Ti, RHi,WXi,WYi
un X-wind velocity along the wave normal direction
V Atmospheric variables Hi, ZHi,WXHi,WY Hi

vn Y-wind velocity along the wave normal direction
W Wind at an arbitrary location along the ray
WXi Input winds of atmospheric wind X-profile
WXHi Input altitudes of atmospheric wind X-profile
WYi Input winds of atmospheric wind Y-profile
WYHi Input altitudes of atmospheric wind Y-profile
x Independent input random variable
xi Longitudinal ranges along each ray ∀i ∈ [1, 4] of the ray tube
Y Response value
yi Lateral ranges along each ray ∀i ∈ [1, 4] of the ray tube
zi Vertical distances along each ray ∀i ∈ [1, 4] of the ray tube
ZHi Input altitudes of atmospheric humidity profile

Subscripts

0 Starting conditions
i running iteration counter
l Sensitivity index w.r.t. temperature profile
n Propagation iteration counter
r Sensitivity index w.r.t. relative humidity profile
x Longitudinal component
y Lateral component
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I. Introduction and Motivation

Sonic boom remains a critical concern for commercial supersonic overland flight. Since the successful
demonstration of the DARPA Shaped Sonic Boom Demonstrator (SSBD),1 the past decade has seen
multiple research efforts2,3, 4, 5, 6, 7, 8, 9 toward mitigating the adverse impact of sonic boom. Numerical tools
and methods employed for boom mitigation have seen tremendous improvements not only due to ever
increasing computational power, but also through the use of advanced techniques such as adjoint-based
methods. Multiple studies have demonstrated the capability of adjoint-based methods to optimize near-field
pressure waveforms,2,10,11 ground-based boom metrics,8 as well as equivalent area metrics.5,9 A fundamental
assumption in these studies has been that the atmospheric temperature, humidity and wind distributions are
fixed to standard atmospheric12 profiles that do not vary with time. In reality, boom metrics on the ground
are based on the prevalent atmospheric conditions and there is a need to quantify this uncertainty under
varying atmospheric conditions so it may be considered during the design process.

The primary objective of this paper is to develop a discrete adjoint methodology to obtain sensitivities of
boom metrics with respect to atmospheric temperature, relative humidity and wind profiles, and use them
for robust design of an underlying concept under varying atmospheric conditions. The propagation algorithm
used in this study is sBOOM.13 The ultimate goal is to design aircraft concepts while accounting for the
aleatory uncertainty inherent in atmospheric propagation.

In robust design, probability distributions are placed on uncertain parameters and appropriate techniques
are used to obtain distributions of the output quantities of interest. While stochastic techniques such as Monte
Carlo methods may be used without the need for sensitivities, such approaches can become prohibitively
expensive due to the numerous function evaluations needed to generate usable probability distributions.
Despite this computational expense, the sensitivities of moments (mean and standard deviation) from
probability distributions is not known. In the interest of minimizing computational expense, a non-intrusive
polynomial chaos surrogate modeling approach14 is used to perform uncertainty quantification. This has the
additional advantage of providing analytical mean and standard deviation sensitivities. The optimization
problem is recast to a robust design objective as given in Eq. 1, where JN is a non-deterministic function of
the objective chosen for optimization.

JN = µ(J) + σ(J) (1)

The paper is organized as follows: Section II provides a brief derivation of changes needed in the boom
adjoint formulation to account for atmospheric sensitivities. Section III provides verification of adjoint
sensitivities by using complex variables. Section IV discusses polynomial chaos formulation; and sections V,
VI and VII detail the CFD integration, optimization setup, and results, respectively. Finally, conclusions and
future work will be discussed.

II. Extension to Existing Theory

The discrete adjoint formulation derived in this section is based on a similar implementation developed
in Refs. 8 and 9. In this paper, specific details that pertain to computation of sensitivities with respect to
atmospheric parameters are provided. The primary difference occurs in the independent variable vector D,
which represented the near-field pressure or equivalent area distribution in the old formulation, now represents
the atmospheric temperature pairs (Hi, Ti)∀i ∈ [1, nt], relative humidity pairs (ZHi, RHi)∀i ∈ [1, nh], as well
as X and Y wind pairs, (WXHi,WXi)∀i ∈ [1, nwx], and (WYHi,WYi)∀i ∈ [1, nwy]. This makes the length
of the independent design variable vector to be 2(nt+ nh+ nwx+ nwy).

Following the formulation of previous papers, the Lagrangian corresponding to a chosen objective, J ,

is written in Eq. 2, where kn is the Blokhintzev invariant15 scaling factor given by
√

ρ0c0G
ρcG0

ε
ε0

. The details

of the matrix terms are provided in the Appendix. Taking the derivative of the Lagrangian with respect
to D results in Eq. 3. Contrary to the previous boom-adjoint formulations, the relevant matrices during
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propagation now depend on the design variable vector D, and hence matrix derivative terms now appear in
the derivative of the Lagrangian.

L(p, q, r, t,D) = J(pN , D) +

N∑
n=2

γT0,n [Anqn − knBnpn−1] +

N∑
n=1

γT1,n [An,2rn −Bn,2qn]

+

N∑
n=1

βTn [An,3tn −Bn,3rn] +

N∑
n=1

λTn [pn − fn(tn, D)] + γT0,1 [A1q1 − k1B1p0(D)]

(2)

dL

dD
=

[
∂JN
∂D

+
∂JN
∂pN

∂pN
∂D

]
+

N∑
n=1

γT1,n

[
An,2

∂rn
∂D

+
∂An,2
∂D

rn −Bn,2
∂qn
∂D
− ∂Bn,2

∂D
qn

]

+

N∑
n=2

γT0,n

[
An

∂qn
∂D

+
∂An
∂D

qn − knBn
∂pn−1

∂D
− ∂kn
∂D

Bnpn−1 − kn
∂Bn
∂D

pn−1

]

+

N∑
n=1

βTn

[
An,3

∂tn
∂D

+
∂An,3
∂D

tn −Bn,3
∂rn
∂D
− ∂Bn,3

∂D
rn

]
+

N∑
n=1

λTn

[
∂pn
∂D
− ∂fn
∂D
− ∂fn
∂tn

∂tn
∂D

]
+γT0,1

[
A1

∂q1

∂D
+
∂A1

∂D
q1 − k1B1

∂p0

∂D
− ∂k1

∂D
B1p0 − k1

∂B1

∂D
p0

]
(3)

Adjoint equations are extracted as in previous formulations8,9 and the resulting terms, given in Eq.
4, allow computation of the relevant uncertainty sensitivities. Note that this expression is quite involved
compared to the gradient expression for computing the deterministic sensitivities (See Eq. 19 from Ref 8).

dL

dD
=

N∑
n=2

γT0,n

[
∂An
∂D

qn −
∂kn
∂D

Bnpn−1 − kn
∂Bn
∂D

pn−1

]

+

N∑
n=1

γT1,n

[
∂An,2
∂D

rn −
∂Bn,2
∂D

qn

]
+

N∑
n=1

βTn

[
∂An,3
∂D

tn −
∂Bn,3
∂D

rn

]

−
N∑
n=1

λTn

[
∂fn
∂D

]
+ γT0,1

[
∂A1

∂D
q1 −

∂k1

∂D
B1p0 − k1

∂B1

∂D
p0 − k1B1

∂p0

∂D

] (4)

In order to get the matrix derivative terms, ray acoustics are differentiated to obtain sensitivities of several
quantities, notably:

1. Atmospheric properties

2. Atmospheric absorption and relaxation effects

3. Longitudinal and lateral ranges

4. Ray tube areas, wind effects

Sensitivities at each succeeding level require preceding level sensitivities as a prerequisite.

II.A. Differentiating Atmospheric Properties

A schematic of the ray as it travels from aircraft to ground through the atmosphere is depicted in Fig. 1.
The path taken by the ray is determined by geometric ray acoustic equations.16 Given the atmospheric
temperature profile as altitude and temperature pairs (Hi, Ti)∀i ∈ [1, nt], the atmospheric temperature (Th)
at any intermediate point on the ray is a linear interpolation between the temperatures at the enclosing
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Figure 1. Side view of ray propagation through the atmosphere.

altitudes [Hi−1, Hi]. Sensitivities of Th with respect to atmospheric temperature profile inputs are calculated
analytically by differentiating the underlying linear interpolation. Because speed of sound is dependent solely
on the temperature via ch =

√
γRTh, its sensitivity can also be obtained.

The pressures at the input altitudes Hi∀i ∈ [1, nt] need to be determined before atmospheric pressures at
intermediate locations are obtained. These pressures are calculated based on the hydrostatic equation, which
may be differentiated to obtain pressure sensitivities at the input altitudes, Hi. The pressures and their
sensitivities at the intermediate ray locations can then be computed. Temperature sensitivities have strong
local support depending on immediately preceding and succeeding altitude and temperature values enclosing
the current location on the ray. In contrast, pressure (and consequently density) sensitivities have non-zero
values from the ground level and up to the position immediately above the current intermediate location
of the ray. After this step, we would have [dThdl ,

dPh
dl ,

dρh
dl ,

dch
dl ] where l ∈ [Hi, Ti]∀i ∈ [1, nt]. Atmospheric

properties do not depend on relative humidity or winds, therefore their corresponding sensitivities are zero.

II.B. Differentiating Atmospheric Absorption and Relaxation Effects

During propagation, atmospheric absorption formulae17 are used to account for the thermo-viscous attenuation
and vibrational relaxation losses due to nitrogen and oxygen, which are functions of temperature, pressure,
and relative humidity. These quantities are numerically differentiated to obtain sensitivities of these quantities
with respect to atmospheric temperature, wind and relative humidity profiles. Due to their dependence on
atmospheric pressures, these sensitivities do not exhibit local support and are non-zero with respect to all the
altitudes from the ground level to the location in the atmospheric profile immediately above the current ray
point. The absorption coefficient is given by Eq. 5, where Pr = 101.325 kPa is the reference pressure, and
Tr = 293.15K is the reference temperature. Its sensitivity is numerically computed by using Eq. 6, where
l ∈ [Hi, Ti]∀i ∈ [1, nt].

Acr = 1.84× 10−11.0 Pr
Ph

√
Th
Tr

(5)

dAcr
dl

= 1.84× 10−11.0 Pr√
Tr

0.5Ph
dTh
dl − Th

dPh
dl

P 2
h

√
Th

(6)

The vibrational relaxation has two terms. The first term depends solely on the temperature profile,
and its sensitivity is calculated as for the above term. The second term is given by Eq. 7 for nitrogen,
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where the percent mole fraction of water vapor in air (m) depends on relative humidity via m = (RH)Psat
Ph

.
The derivative terms with respect to temperature and relative humidity profiles are given by Eqs. 8 and 9,
respectively. Other relevant terms are similarly computed.

fv,N =
Ph
Pr

(24 + 4.04× 104.0m
0.02 +m

0.391 +m
) (7)

dfv,N
dl

=
24

Pr

dPh
dl

+
4.04× 104.0

Pr

(0.391 +m)dPhdl m(0.02 +m) + Ph(0.02 + 2m)dmdl − Phm(0.02 + hm)dmdl
(0.391 +m)2

(8)

dfv,N
dr

= 4.04× 104.0Ph
Pr

(0.391 +m)(0.02 +m)dmdr − (0.02m+m2)dmdr
(0.391 +m)2

(9)

II.C. Differentiating Longitudinal and Lateral Ranges

Obtaining the lateral range sensitivities involves differentiating multiple quantities such as propagation angles,
ray vectors, Snell’s constant, wind velocities, along with the above mentioned quantities with respect to
all atmospheric profile inputs. Once these are obtained, the incremental longitudinal and lateral ranges,
for each of the four rays comprising the ray tube may be differentiated to obtain their sensitivity with
respect to atmospheric parameters. These incremental quantities are summed during propagation of aircraft
disturbances along ray tubes from cruise altitude to ground. This results in sensitivities of the longitudinal
and lateral ranges with respect to atmospheric temperature and wind profiles.

II.D. Differentiating Ray Tube Areas

Once sensitivities of longitudinal/lateral ranges, ray vectors, and angles with respect to all relevant atmospheric
profiles are obtained, the ray tube area calculation is differentiated to obtain the sensitivities with respect to
the relevant atmospheric quantities. This includes calculation of the sensitivity of the unit vector along the
wave normal direction n̂. These values are then used in a discrete-adjoint gradient formulation (see Eq. 4) to
extrapolate these sensitivities to the ground.

II.E. Demonstration Example

In order to demonstrate the use of these atmospheric sensitivities in robust design optimization, sample
atmospheric temperature, and wind distributions are given in tables 1, 2, and 3, respectively. The temperature
profile follows the ISO standard atmosphere model with arbitrarily chosen wind distributions. The relative
humidity profile follows ANSI S1.26-1995, Appendix C.17 The relative humidity profile is truncated at 45000
ft amounting to 46 altitude, relative humidity pairs. With this choice of atmospheric profiles, the number of
variables for atmospheric sensitivity calculation is 2× (3 + 3 + 11 + 46) = 126. The formulation is not limited
to these distributions; the user has the freedom to pick any arbitrary atmospheric profile with the only caveat
being that the computational time will increase as the size of the uncertain variable vector increases.

Table 1. Atmospheric temperature table.

i Altitude (m) Temperature (oF )

1 0.0 59.0

2 11000.0 -69.7

3 20000.0 -69.7

Table 2. Atmospheric x-wind table.

i Altitude (m) X-Wind (m/s)

1 0.0 0.0

2 5000.0 20.0

3 20000.0 30.0

With the above atmospheric profile inputs, an arbitrary near-field is propagated from 45000.0 ft to the
ground (MSL) and the sensitivity of ray tube areas with respect to Ti and Hi∀i ∈ [1, nt] are plotted in Figs.

6 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
2,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
82

 



Table 3. Atmospheric y-wind table.

i Altitude (m) Y-Wind (m/s) i Altitude (m) Y-Wind (m/s)

1 0.0 0.0 7 13950.0 16.0

2 2000.0 10.0 8 14000.0 14.0

3 4000.0 12.0 9 16000.0 16.0

4 6000.0 14.0 10 18000.0 18.0

5 8000.0 16.0 11 20000.0 20.0

6 13700.0 18.0

2 and 3, respectively. As the distance along the ray tube increases, the disturbance propagates towards
the ground from the source (aircraft location) and the ray tube area (G) increases as shown by the solid
line. Because the starting location of propagation is between atmospheric temperature layers 2 and 3, the
sensitivity with respect to T1 starts off at zero and becomes non-zero when the ray tube crosses into the first
atmospheric temperature layer. As the ray moves downwards, the sensitivity with respect to T3 gradually
drops, as expected. The sensitivity with respect to T1 initially drops owing to the effect of Snell’s constant,
but then gradually increases as the ray approaches the ground.

Because the propagation starts in a constant temperature layer, all sensitivities with respect to Hi are
zero to begin with. As soon as the ray moves into the subsequent layer, the sensitivities with respect to H1

and H2 become non-zero and stay that way through the end of propagation. Sensitivity with respect to H3

remains zero through out.

Figure 2. Sensitivities of ray tube areas wrt Ti along the ray.

Finally, all relevant derivative terms are used to compute the sensitivities of the ground A-weighted
loudness levels with respect to the atmospheric parameters. This information is plotted in Fig. 4. A
few observations can be made: the sensitivities with respect to altitude variables are almost two orders of
magnitude smaller than those with respect to profile variables. The relative humidity sensitivities seem
smaller compared to temperature and wind sensitivities; however the relative humidity profile has much
finer resolution than the other profiles and therefore the effect of the sensitivities is dispersed across multiple
values. The relative humidity between 4 and 10 km seem to have appreciably large sensitivities compared to
altitudes out of this range.
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Figure 3. Sensitivities of ray tube areas wrt Hi along the ray.

III. Verification of Adjoint Sensitivities

To verify that the sensitivity values obtained from adjoint calculations are correct, a complex variable
version of the propagation algorithm8 has been extended to include atmospheric profile parameters. The use
of complex step approach18,19 is common practice for discrete-adjoint gradient verification. The derivatives
of appropriate cost functional with respect to the chosen design variables are calculated with an imaginary
step size of 10−50. As an example case, an arbitrary off-body pressure waveform is propagated to the ground
from an altitude of 45000.0 ft by using the atmospheric profiles from the previous section.

Figure 4. Sensitivities of ground loudness to uncertain atmospheric parameters.
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III.A. Sensitivity of Ranges to Temperature Profile

Table 4 compares the adjoint and complex variable gradients of the longitudinal range (X) with respect
to the atmospheric temperature profile propagated at φ = 0 deg. The results obtained by using the
discrete-adjoint implementation exhibit excellent agreement with the complex-variable sensitivities. The
lateral range sensitivities, not shown here, exhibit similar agreement.

Table 4. Comparison of the adjoint and complex variable gradients of longitudinal range with respect to atmo-
spheric temperature profile.

i Adjoint dX
dHi

Complex dX
dHi

Adjoint dX
dTi

Complex dX
dTi

1 3.6411515035386e-01 3.6411515035386e-01 3.1120953021697e+01 3.1120953021697e+01

2 3.5756795853379e-01 3.5756795853379e-01 -1.9552471410692e+01 -1.9552471410692E+01

3 0.0 0.0 -2.4785035986202e+01 -2.4785035986202e+01

III.B. Sensitivity of Ray Tube Area to Temperature Profile

Table 5 compares the sensitivities of the final ray tube areas with respect to the temperature profile and
shows similarly good agreement with the values computed using the complex step.

Table 5. Comparison of the adjoint and complex variable gradients of final ray tube area with
respect to atmospheric temperature profile.

i Adjoint dG
dHi

Complex dG
dHi

Adjoint dG
dTi

Complex dG
dTi

1 -1.321129416e-05 -1.321129367e-05 -1.12917044154e-03 -1.12917044122e-03

2 2.7231615202e-04 2.7231615202e-04 3.555981669993e-02 3.555981669740E-02

3 0.0 0.0 2.88949068962e-03 2.88949068922E-003

III.C. Sensitivity of Boom Loudness on Ground to Atmospheric Profiles

Tables 6, 7, 8 and 9 compare the adjoint and complex sensitivities of the A-weighted sonic boom loudness on
the ground with respect to temperature, relative humidity, longitudinal winds, and lateral winds, respectively.
These show the adjoint sensitivities to be sufficiently accurate for robust shape optimization.

Table 6. Comparison of the adjoint and complex variable gradients of loudness with respect to atmospheric
temperature profile.

i Adjoint d(dBA)
dHi

Complex d(dBA)
dHi

Adjoint d(dBA)
dTi

Complex d(dBA)
dTi

1 -2.65520482293e-03 -2.655204826526e-03 -3.1715456323555e-01 -3.1715456305859e-01

2 -1.50109609843e-03 -1.50109609746e-03 -1.0220917238573e-01 -1.0220917227936e-01

3 0.0 0.0 8.31945048719e-03 8.31945047897e-03

IV. Robust Design via Polynomial Chaos

This section details integration of the robust adjoint-based approach with stochastic expansions based
on polynomial chaos theory for efficient design of low boom configurations under conditions of atmospheric
uncertainty. The first section outlines the approach to adjoint-based design under aleatory uncertainty. The
second section details the non-intrusive polynomial chaos formulation along with two alternative approaches
for point-collocation. The third section describes the moments and sensitivities that can be obtained from
the polynomial chaos expansion (PCE), which are required for adjoint-based robust design. The last section
describes the design optimization approach used in this study.
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Table 7. Comparison of the adjoint and complex variable gradients of loudness with respect to
atmospheric relative humidity profile.

i Adjoint d(dBA)
dZHi

Complex d(dBA)
dZHi

Adjoint d(dBA)
dRHi

Complex d(dBA)
dRHi

1 -3.31340788e-06 -3.31340850e-06 1.15583996055e-03 1.15584018002e-03

5 1.138961647e-05 1.138961270e-05 -2.19573375454e-03 -2.19573398795e-03

15 1.003778893e-05 1.003778657e-05 -3.89453657775e-03 -3.89453667621e-03

25 -4.08028872e-06 -4.08029035e-06 -3.1340648204e-04 -3.1340659837e-04

45 -5.573018e-08 -5.573029e-08 -1.443489020e-05 -1.4434919046e-05

Table 8. Comparison of the adjoint and complex variable gradients of loudness with respect to
atmospheric X-wind profile.

i Adjoint d(dBA)
dWXHi

Complex d(dBA)
dWXHi

Adjoint d(dBA)
dWXi

Complex d(dBA)
dWXi

1 1.6883853603e-04 1.6883854879e-04 -4.220963400862e-02 -4.220963718547e-02

2 1.1105345796e-04 1.1105433172e-04 -2.876100869696e-02 -2.876100356143e-02

3 -1.396746132e-05 -1.396746828e-05 2.095120198323e-02 2.095120211186e-02

Table 9. Comparison of the adjoint and complex variable gradients of loudness with respect
to atmospheric Y-wind profile.

i Adjoint d(dBA)
dWYHi

Complex d(dBA)
dWYHi

Adjoint d(dBA)
dWYi

Complex d(dBA)
dWYi

2 1.47401661e-06 1.47401704e-06 -5.3625057572e-04 -5.3625070189e-04

4 2.8889192e-07 2.8889213e-07 -2.8889192834e-04 -2.8889213997e-04

6 -5.8675941e-07 -5.8676048e-07 -3.1677933271e-04 -3.1677940016e-04

IV.A. Adjoint-Based Robust Design Under Aleatory Uncertainty

Design optimization seeks to minimize some quantity (e.g., dBA, PLdB, etc.) written as:

min J(D) (10)

where D is a vector of the design variables. For deterministic design, J is simply the objective of interest.
For a stochastic process, the objective is also a function of the uncertain variables. With uncertainty, the
formulation of J must be changed to account for variation in the system due to the random variables.

Design under uncertainty is based on performing optimization with an objective composed of mean and
standard deviation of the objective. One such approach is known as robust design. The objective for robust
design is to reduce not only the mean of the design quantity, but also the standard deviation. The robust
design objective used in this study (see Eq. (1)) is suitable for systems that possess inherent or aleatory
uncertainty due to random variations in the physical system. Adjoint-based design requires calculation of the
objective gradients with respect to the design variables, as shown in Eq. (11).

dJ

dD
=

dµ

dD
+
dσ

dD
(11)

One of the significant challenges with design under uncertainty is the computational cost of propagating the
uncertainty at each optimization step. Traditional sampling approaches may require a significant number
of evaluations of the deterministic model to obtain converged statistics. When the deterministic model is
complicated as in the case of CFD-based design, traditional sampling techniques may become impractical.
To relax the computational burden, a surrogate modeling approach may be used as a means of efficient
uncertainty propagation and quantification.

IV.B. Point-Collocation Non-intrusive Polynomial Chaos

In recent studies,20,21,22,23,24 the polynomial chaos method has been favored as a means of uncertainty
quantification (UQ) over traditional methods such as Monte Carlo, due to its computational efficiency.
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Polynomial chaos is a surrogate modeling technique based on a spectral representation of uncertainty. An
important aspect of this representation is that a response value or random function Y can be separated into
deterministic and stochastic components, as shown in Eq. (12).

Y (ξ,D) ≈
P∑
i=0

αi(D)Ψi(ξ) (12)

Here, αi is the deterministic component and Ψi are the random variable basis functions corresponding to
the ith mode. The response Y is a function of the independent, random variables ξ, and design variables D.
Note that this series is, by definition, an infinite series. However, in practice it is truncated, and a discrete
sum is taken over a number of output modes.25 To form a complete basis for a total order expansion, Nt
terms are required, which can be computed from Eq. (13) for a polynomial chaos expansion (PCE) of order s
(s = 2 in this study) and a number of random variables, n.

Nt = P + 1 =
(n+ s)!

n!s!
(13)

Further details on polynomial chaos theory are given by Ghanem26 and Eldred.25

To determine the expansion coefficients αi, polynomial chaos methods can be implemented by using an
intrusive or non-intrusive approach. The intrusive mthod, while appearing straightforward, has been shown
to be computationally expensive for complicated problems.20 As a result, this work applies the non-intrusive
approach for which modification of the deterministic model is unnecessary, and that requires only the response
values at selected sample points to approximate the stochastic response surface.

IV.B.1. General Approach to Point-Collocation

Several methods have been developed for non-intrusive polynomial chaos (NIPC). Of these, point-collocation
NIPC has been used extensively in aerospace simulations and CFD problems.21,22,24,27 The point-collocation
method starts with replacement of a stochastic response with its PCE according to Eq. (12). Nt vectors are
then chosen in random space, and the deterministic code is evaluated at these points, which form the left
hand side of Eq. (12). Following this, a linear system of Nt equations can be formulated and solved for the
spectral modes of the random variables. This system is shown in Eq. (14).

Ψ0(ξ0) Ψ1(ξ0) · · · ΨP (ξ0)

Ψ0(ξ1) Ψ1(ξ1) · · · ΨP (ξ1)
...

...
. . .

...

Ψ0(ξP ) Ψ1(ξP ) · · · ΨP (ξP )



α0

α1

...

αP

 =


Y (D, ξ0)

Y (D, ξ1)
...

Y (D, ξP )

 (14)

Note that for this linear system, Nt is the minimum number of deterministic samples required to obtain an
analytical solution (i.e., the coefficient vector). If more samples are available and are linearly independent,
the system is overdetermined and can be solved using a least squares approach. The number of samples
over the required minimum is represented by the use of an oversampling ratio (OSR), defined as the ratio of
the number of actual samples to the minimum number required (Nt). In general, the number of collocation
points can be determined by multiplying Eq. (13) by an OSR. Hosder et al.28 determined an effective OSR
of 2.0 for the stochastic model problems studied and showed that the accuracy of the PCE is dependent on
the number of collocation points.

IV.B.2. Gradient-Enhanced Point-Collocation

The general point-collocation approach can be extended to include gradients for the calculation of the expansion
coefficients.27,29,30 In surrogate modeling, this is commonly referred to as gradient enhancement. When
using the point-collocation NIPC approach, the gradient formulation can be developed by first differentiating
Eq. (12) with respect to the jth standard random variable, as shown in Eq. (15)

∂Y (D, ξ)

∂ξj
≈

P∑
i=0

αi(D)
∂Ψi(ξ)

∂ξj
(15)
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Expanding the LHS by noting the standard random variable ξ is a function of the actual random variable
x yields Eq. (16).

∂Y (D, ξ)

∂xj

∂xj
∂ξj
≈

P∑
i=0

αi(D)
∂Ψi(ξ)

∂ξj
(16)

Note that the first term on the LHS is the derivative obtained from a local sensitivity analysis. The next
term is based on the known distribution of the uncertain input variable. A normally distributed variable
with mean µ and standard deviation σ is shown in Eq. (17).

xi = σξi + µ→ ∂xi
∂ξi

= σ (17)

The differentiated PCE with respect to each uncertain variable at each sample point (Eq. (16)) can be
appended to the linear system of Eq. (14). The new system of linear equations is shown in Eq. (18). Note
that for NS sample points, n number of random variables, and Nt terms in the PCE, the dimensions of the
coefficient matrix are NS(n+ 1) by Nt, the solution vector has dimension NS(n+ 1), and the unknown vector
has dimension Nt.



Ψ0(ξ0) Ψ1(ξ0) · · · ΨP (ξ0)
∂Ψ0(ξ0)
∂ξ1

∂Ψ1(ξ0)
∂ξ1

· · · ∂ΨP (ξ0)
∂ξ1

...
...

. . .
...

∂Ψ0(ξ0)
∂ξn

∂Ψ1(ξ0)
∂ξn

· · · ∂ΨP (ξ0)
∂ξn

Ψ0(ξ1) Ψ1(ξ1) · · · ΨP (ξ1)
∂Ψ0(ξ1)
∂ξ1

∂Ψ1(ξ1)
∂ξ1

· · · ∂ΨP (ξ1)
∂ξ1

...
...

. . .
...

∂Ψ0(ξ1)
∂ξn

∂Ψ1(ξ1)
∂ξn

· · · ∂ΨP (ξ1)
∂ξn

...
...

. . .
...

...
...

. . .
...

Ψ0(ξNs−1) Ψ1(ξNs−1) · · · ΨP (ξNs−1)
∂Ψ0(ξNs−1)

∂ξ1

∂Ψ1(ξNs−1)

∂ξ1
· · · ∂ΨP (ξNs−1)

∂ξ1
...

...
. . .

...
∂Ψ0(ξNs−1)

∂ξn

∂Ψ1(ξNs−1)

∂ξn
· · · ∂ΨP (ξNs−1)

∂ξn





α0

α1

α2

...

...

...

...

...

...

...

...

...

...

αP



=



Y (D, ξ0)
∂Y (D,ξ0)

∂x1

∂x1

∂ξ1
...

∂Y (D,ξ0)
∂xn

∂xN
∂ξn

∂Y (D,ξ1)
∂x1

∂x1

∂ξ1
...

∂Y (D,ξ1)
∂xn

∂xN
∂ξn

...

...

Y (D, ξNs−1)
∂Y (D,ξNs−1)

∂x1

∂x1

∂ξ1
...

∂Y (D,ξNs−1)

∂xn
∂xn
∂ξn



(18)

The derivatives of the basis polynomials in the LHS of Eq. (18) can be obtained either analytically or through
finite differencing. The solution procedure is no different than that used for the original point-collocation
scheme. However, this modified scheme makes use of gradients, which can be obtained through sensitivity
analysis. This approach has the advantage of reducing the number of samples needed to construct the
surrogate model and promise to reduce the computational cost of computing sensitivities with respect to the
uncertain variables.

IV.B.3. Sparse Approximation

Polynomial chaos techniques suffer from the curse of dimensionality. That is, the number of deterministic
model evaluations required to create an accurate surrogate model grows exponentially with the number
of random dimensions. For many large-scale, complicated problems, the minimum required number of
deterministic model samples may be impractical or even impossible to obtain. An ideal approach would
achieve an accurate surrogate model with as few deterministic samples as possible, even if the minimum
number of samples required for a total order expansion (Eq. (13)) is not achievable. The next subsection
describes an underdetermined solution approach that will achieve accuracy in the surrogate model while
reducing the cost of deterministic evaluations.
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In general, a system of linear equations that has fewer linearly independent equations than unknowns
possesses an infinite number of solutions. In many PCEs, only a small fraction of the coefficients may
carry significant weight in the surrogate model. This allows for an assumption that many of the expansion
coefficients are zero, making the vector of expansion coefficients sparse. Under this assumption, the linear
system can be regularized, which allows for a well-posed problem. The objective is to seek a solution to the
linear system with the fewest number of non-zero coefficients. By using convex relaxation, a solution can be
obtained from the L1-minimization problem shown in Eq. (19).

min
∥∥∥α∥∥∥

1
subject to

∥∥∥Ψα− Y
∥∥∥

2
≤ δ (19)

Here, δ is the truncation error associated with the truncation of the series in Eq. (12). For problems in this
study, δ is assumed to be near zero, as it can be shown that the solution to Eq. (19) is unique in this instance.
In the above formulation, the dimensions of Ψ are Ns by Nt and the vector α∗ is of length Ns, with Ns < Nt
for the underdetermined problem. The vector α is of length Nt. Doostan and Owhadi31 discuss, in great
detail, the theory and formulation of the above method, as well as its stability.

The optimization problem in Eq. (19) is commonly referred to as Basis Pursuit Denoising (BPDN),31,32,33

and can be solved using methods from quadratic programming.32,33 In the current study, the least absolute
shrinkage and selection operator (LASSO) homotopy optimization routine33 was selected to find the optimal
solution of Eq. (19). While many methods exist for solving the above minimization problem, the homotopy
method was selected for efficiency, as this method is not significantly affected by the dimensionality of the
problem.32

IV.C. Moments and Design Variable Sensitivities

Adjoint-based design under uncertainty requires that statistical moments and gradient information with
respect to the design variables be determined. Eldred25 shows that with polynomial chaos, moments can be
determined analytically, as shown in Eqs. (20) and (21) for the mean and variance of the stochastic expansion.

µY = 〈Y 〉 ≈
P∑
i=0

αi(D)〈Ψi(ξ)〉 = α0 (20)

σ2
Y = 〈(Y − µY )2〉 ≈ 〈(

P∑
i=0

αi(D)Ψi(ξ))2〉 =

P∑
i=1

α2
i (D)〈Ψ2

i (ξ)〉 (21)

The robust design objective in Eq. (1) can be calculated with these two moments. In this study, because
discrete-adjoint gradients are available, the gradient-enhanced point-collation approach is used for computation
of the robust objective.

To satisfy the adjoint-based design objective in Eq. (11), moment sensitivities must be obtained. The
sensitivity of the mean with respect to the design variables is obtained by differentiating Eq. (20), which is
shown in Eq. (22).

dµY
dD

=
d

dD
〈Y 〉 = 〈 dY

dD
〉 (22)

This calculation is trivial when the sensitivities of each response with respect to each design variable are
known, as it is simply the average of the sensitivities for each design variable. The sensitivity of the variance
is shown in Eq. (23), which is obtained by differentiating Eq. (21).

dσ2
Y

dD
=

P∑
i=1

〈Ψ2
i (ξ)〉

dα2
j

dD
= 2

P∑
i=1

αj〈Ψ2
i (ξ)〉dαj

dD
(23)

Obtaining the sensitivities in Eq. (23) requires that the sensitivities of the expansion coefficients be determined.
A second polynomial chaos expansion can be constructed by differentiating Eq. (12) with respect to the jth

design variable, as shown in Eq. (24).

∂Y (D, ξ)

∂Dj
≈

P∑
i=0

dαi(D)

dDj
Ψi(ξ) (24)
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Solving this equation for sensitivities of the expansion coefficients must be done for each of the design variables
and can be accomplished with general point-collocation or the L1-minimization approach, if the system is
underdetermined. The sensitivity-based approach can also be used, but has an added cost of obtaining mixed
derivative ∂

∂ξ ( ∂Y∂D ).

V. CFD Integration

The boom-adjoint formulation developed here is coupled with the NASA Langley FUN3D34 unstructured
CFD solver. FUN3D solves the steady and unsteady Euler and Reynolds-averaged Navier-Stokes equations
on general static and dynamic mixed-element grid discretizations. It has been used for a broad class of
aerodynamic analysis and design simulations across the speed range. FUN3D also offers a discretely-consistent
adjoint implementation that has been used to perform mathematically-rigorous design optimization,35,36,37

error estimation, and formal mesh adaptation38,39 for complex geometries and flow-fields in massively parallel
computing environments. In addition, FUN3D offers a discretely-consistent forward mode of differentiation.
A scripting procedure40 can be used to automatically convert the baseline source code to a complex-variable
formulation.

FUN3D coupling essentially follows the description from earlier work8 except in the non-deterministic
case, where the sensitivities are separated into two components: those with respect to the deterministic
shape variables (D) and those with respect to uncertain atmospheric parameters (ξ). The flowchart of the
CFD integration used in this study is depicted in Fig. 5, where it is assumed that the number of sBOOM
propagation runs needed to quantify the uncertainty is less than the computational nodes used for the
simulation; this need not be the case in general. To start the process, the underlying concept is gridded and
parameterized. Employing efficient decomposition algorithms, the grid is spread across a computational cluster
consisting of E nodes and the flow or adjoint solver is run. Inter-nodal communication is used to maintain
the integrity of the complete domain solution. Probability distributions are placed on the uncertain variables
and latin hypercube sampling is used to generate F = 2(nt+ nh+ nwx+ nwy) + 1 atmospheric profiles, each
of which is propagated to the ground in an “embarrassingly parallel” fashion by using a subset/superset of
the computational nodes allocated to run the flow/adjoint solvers. After successful completion of sBOOM
runs, the objectives and sensitivities, both with respect to deterministic and non-deterministic variables, are
passed to the uncertainty quantification algorithm, which then computes the non-deterministic objective
values along with their corresponding sensitivities. This information is gathered by the optimizer and used to
update the shape parameters for the next iteration of gradient optimization.

Figure 5. Flowchart of FUN3D-sBOOM-UQ integration.
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VI. Optimization Problem and Setup

The adjoint formulation described in this study is applied to an axisymmetric body of revolution in
supersonic flow with free-stream Mach number of 1.6, and angle of attack of 0.6 deg. The initial mesh for
this body is generated using VGRID41 and SSGRID.42 The grid generation approach employs a heuristic
technique to align the mesh topology a priori with the expected primary off-body shock structures. A more
rigorous adjoint-based approach to mesh adaptation for such problems is described in literature43 . The
near-field is extracted at an off-body distance of 450 ft below the aircraft, which translates to 3 body-lengths.
The objective is to reduce the A-weighted loudness of the sonic boom signatures at the ground level with and
without consideration of uncertain atmospheric effects. An Euler solver is used in this study as viscous effects
are likely to be small for boom minimization purposes.

The surface mesh for the axisymmetric body is parameterized by using the BANDAIDS44 free-form shape
deformation tool. BANDAIDS provides a compact set of design variables for modifying a discrete surface
mesh in the normal direction, along with analytic sensitivities required by the discrete adjoint formulation of
the near-field CFD problem. The parameters for shape modification are NURBS control points. However,
to make smooth changes to the underlying mesh and reduce the number of variables, all control points at
constant-x are grouped to allow radial expansion or contraction of that station by a single variable. After
grouping, there are a total of 25 design variables for modifying the concept, with only 21 allowed to very
during optimization. Because of compact support of NURBS basis functions, deformations at any section
smoothly deforms the underlying mesh up to two adjacent stations on either side of the location being
deformed. The primary criteria in the choice of parameterization was to balance the number of design
variables with deformation smoothness. The SNOPT optimization package45 was used to perform shape
optimization.

VII. Results and Discussion

This section presents the shape optimization results of both the deterministic and robust optimization
approaches, and results from each are discussed.

VII.A. Deterministic Optimization

A deterministic unconstrained optimization is initially run to minimize the A-weighted loudness obtained
using standard atmospheric profiles. Figure 6(a) shows the changes to the geometry after optimization
compared to the baseline while Fig. 6(b) depicts cross-sectional comparison along a few non-dimensional
longitudinal locations represented by η. The solid (red) lines represent the baseline and the dash-dotted (blue)
lines represent the optimum configuration. The optimizer shrinks the radius at the front and aft sections while
enlarging the middle portion. Figures 7(a) and 7(b) compare the near-field and ground signatures, respectively.
In the near-field, the initial shock strength is significantly reduced, followed by a gradual pressure increase
to the maximum. Shaping eliminates the middle shock, both in the near-field and the ground signature.
The ground signature changes from a three-strong-shock solution to an essentially sinusoidal shape, with a
reduction from 82.8 to 66.1 on the perceived level scale46 or from 68.6 to 53.5 on the A-weighted loudness
scale.

VII.B. Robust Design Optimization

To simplify the problem and reduce the dimensionality during robust optimization, fewer points in the lateral
wind and relative humidity profiles are used as shown in Tables 10 and 11, respectively. This reduces the
number of uncertain variables to 30. Normal distributions are placed on these variables with means and
standard deviations listed in Table 12.

Robust optimization starts from the same baseline geometry used to start the deterministic optimization.
The optimization reaches a mean and standard deviation of 53.28 and 1.07, respectively. The iteration
histories of both optimization runs are compared in Fig. 8, where the need to evaluate the robustness
measures of the objective has increased the number of function evaluations by more than a factor of two.

Figure 9 compares the cross-section shapes after robust optimization with those resulting from the
deterministic optimization at the quoted η locations. Side-views of the two optimized geometries are also
shown in the figure, where an axis ratio of Y/X = 50 is chosen to emphasize cross-sectional differences. The
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(a) Longitudinal shape comparison (b) Sectional comparison

Figure 6. Shape changes after deterministic optimization

(a) Comparison of ∆p/P at h/L = 3 (b) Ground signature comparison

Figure 7. Near-field and ground signature comparison after deterministic optimization

Table 10. Atmospheric Y-wind table.

i Altitude (m) Y-Wind (m/s)

1 0.0 0.0

2 5000.0 10.0

3 20000.0 20.0

Table 11. Atmospheric Relative
Humidity table.

i Altitude (m) RH (%)

1 0.0 59.62

2 1520.0 67.06

3 6400.0 77.66

4 7620.0 66.96

5 10060.0 24.38

6 13720.0 8.49

cross-sections differ even for this simple axisymmetric body of revolution, where the near-field consists of a
single expansion sandwiched between two compression systems.

Figures 10(a) and 10(b) show the near-field and ground signature comparisons after robust design
optimization, obtained using a standard atmosphere. The near-field changes visibly, and this results in
ground signatures that are slightly different as well. Even though the optimization is run with multiple
atmospheric profiles, the ground signature shown here is computed using a standard atmosphere. The mean
A-weighted loudness is slightly lower, at 53.28 than the deterministic optimum of 53.52, even though the
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Table 12. Atmospheric profile distribution means and standard deviations

Variable µ σ Variable µ σ Variable µ σ

H1 0.0 1.0 ZH5 10060.0 1000.0 WXH3 20000.0 1000.0

H2 11000.0 1000.0 ZH6 13720.0 1000.0 WX1 0.0 1.0

H3 20000.0 1000.0 RH1 59.62 % 15.0 WX2 20.0 5.0

T1 59.0 oF 5.0 RH2 67.06 % 15.0 WX3 30.0 10.0

T2 -69.7 oF 5.0 RH3 77.66 % 15.0 WYH1 0.0 1.0

T3 -69.7 oF 5.0 RH4 66.96 % 15.0 WYH2 5000.0 1000.0

ZH1 0.0 1.0 RH5 24.38 % 10.0 WYH3 20000.0 1000.0

ZH2 1520.0 500.0 RH6 8.49 % 5.0 WY1 0.0 1.0

ZH3 6400.0 1000.0 WXH1 0.0 1.0 WY2 10.0 5.0

ZH4 7620.0 1000.0 WXH2 5000.0 1000.0 WY3 20.0 10.0

Figure 8. Comparison of iteration histories of deterministic and robust optimizations

loudness calculated using the standard atmospheric profile at the robust optimum point is slightly higher
at 53.62. The perceived level follows the same trend as the A-weighted loudness owing to the correlation
between the two metrics.47 The peak overpressure of the robust signature is reduced compared to the
deterministic case; however owing to the smaller rise-time to peak over-pressure of the initial shock, the
loudness is slightly higher. Nevertheless, signature variability due to different atmospheres is taken into
account during optimization, yielding a design robust to atmospheric changes.

The probability distributions of the A-weighted loudness level on the ground before and after robust
design optimization are plotted in Fig. 11. As expected, the current formulation simultaneously reduces the
mean by shifting the curve to the left, as well as the standard deviation by making the distribution sharper.

VIII. Summary

A methodology to tackle propagation uncertainty during sonic boom minimization has been developed by
using a discrete adjoint approach. The formal coupling between the boom adjoint method and CFD has been
enhanced for robust shape optimization of low-boom supersonic aircraft concepts by using a non-intrusive
polynomial chaos formulation. This approach complements other advanced conceptual design methods for
boom mitigation by providing uncertainty bounds on optimized designs. The methodology has been applied
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Figure 9. Sectional changes after robust optimization compared to deterministic optimum

(a) Comparison of ∆p/P at h/L = 3 (b) Ground signature comparison

Figure 10. Near-field and ground signature comparison after robust optimization

to an axisymmetric body to perform both deterministic and robust optimization. The results showed that
robust optimization produced a different optimum, with a shape that accounted for atmospheric variability.
Two major benefits are achieved by using the approach described in this paper. The first benefit is the
simultaneous minimization of the mean and standard deviation, which will become more important as more
uncertain atmospheric parameters are included. The second benefit is that the approach is computationally
efficient through the use of a non-intrusive polynomial chaos formulation that samples a surrogate instead of
the actual analysis and provides analytical sensitivities of the underlying surrogate for use in gradient-based
optimization. In addition, using the boom loudness on the ground as the objective in shape optimization has
the advantage of removing the need for near-field or equivalent area targets, which are required for other
shape optimization approaches to mitigate sonic boom. Future work will apply this methodology to a complex
aircraft concept.
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Figure 11. Probability distributions before and after robust optimization.
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Appendix

The tridiagonal matrices for the relaxation processes are:

An, An2 =



1 0 · · ·
0 1 0 · · ·
0 −ακ1 − κ2 (1 + 2ακ1) κ2 − ακ1 · · ·

. . .
. . .

. . .

· · · 0 1 0

· · · 0 1



Bn, Bn2 =



1 0 · · ·
0 1 0 · · ·
0 α′κ1 − κ2 (1− 2α′κ1) κ2 + α′κ1 · · ·

. . .
. . .

. . .

· · · 0 1 0

· · · 0 1


In the above matrices, κ1 = Cν∆χn

∆τ2 , κ2 = θν
2∆τ , and α′ = 1 − α. If using the Crank-Nicholson scheme,

α = 0.5. For thermo-viscous absorption, the matrices are given below with λ = ∆χn
2Γ(∆τ)2

An3 =


1 0 · · ·
−λ (1 + 2λ) −λ · · ·

. . .
. . .

. . .

· · · 0 1


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Bn3 =


1 0 · · ·
λ (1− 2λ) λ · · ·

. . .
. . .

. . .

· · · 0 1


References

1Pawlowski, J. W., Graham, D. H., et al., “Origins and Overview of the Shaped Sonic Boom Demonstration Program,”
AIAA Paper 2005-5, Jan. 2005.

2Aftosmis, M., Nemec, M., and Cliff, S., “Adjoint-based Low-Boom Design with Cart3D (Invited),” AIAA Paper 2011-3500,
June 2011.

3Howe, D., Simmons, F., and Freund, D., “Development of the Gulfstream Quiet Spike TM for Sonic Boom Minimization,”
AIAA Paper 2008-0124, Jan. 2008.

4Morgenstern, J., Norstrud, N., Stelmack, M., and Skoch, C., “Final Report for the Advanced Concept Studies for Supersonic
Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program,,” Tech. Rep. CR-2010-216796,
PMF-01623, E-17427,Document ID 20100036507, National Aeronautics and Space Administration, Langley, Virginia, Oct. 2010.

5Palacios, F., Alonso, J. J., Colonno, M., Hicken, J., and Lukaczyk, T., “Adjoint-Based method for supersonic aircraft
design using equivalent area distribution,” AIAA Paper 2012-0269, Jan. 2012.

6Magee, T. E., Shaw, S. G., and Fugal, S. R., “Experimental Validations of a Low-Boom Aircraft Design,” AIAA Paper
2013-0646, Jan. 2013.

7Morgenstern, J. M., “Tail-braced wing aircraft and configurations for achieving long supersonic range and low sonic boom,”
US Patent No. 6729577, Lockheed Martin Corporation, May 2004.

8Rallabhandi, S. K., Nielsen, E. J., and Diskin, B., “Sonic-Boom Mitigation Through Aircraft Design and Adjoint
Methodology,” Journal of Aircraft , Vol. 51, No. 2, 2014, pp. 502–510.

9Rallabhandi, S. K., “Application of Adjoint Methodology to Supersonic Aircraft Design Using Reversed Equivalent Areas,”
Journal of Aircraft , Vol. 51, No. 6, 2014, pp. 1873–1882.

10Nadarajah, S., Jameson, A., and Alonso, J., “Sonic Boom Reduction using an Adjoint Method for Wing-Body Configurations
in Supersonic Flow,” AIAA Paper 2002-5547, Sept. 2002.

11Wintzer, M. and Kroo, I., “Optimization and Adjoint-Based CFD for the Conceptual Design of Low Sonic Boom Aircraft,”
AIAA Paper 2012-0963, Jan. 2012.

12“U.S. Standard Atmosphere,” U.S. Government Printing Office, Washington, D.C., 1976.
13Rallabhandi, S. K., “Advanced Sonic Boom Prediction Using Augmented Burger’s Equation,” Journal of Aircraft , Vol. 48,

No. 4, 2011, pp. 1245–1253.
14West, T., Reuter, B., Walker, E., Kleb, W. L., and Park, M. A., “Uncertainty Quantification and Certification Prediction

of Low-Boom Supersonic Aircraft Configurations,” AIAA Paper 2014-2139, June 2014.
15Plotkin, K. J., “State of the Art of Sonic Boom Modeling,” Journal of Acoustical Society of America, Vol. 111, No. 1, Jan.

2002, pp. 530–535.
16Onyeonwu, R. O., “The Effects of Wind and Temperature Gradients on Sonic Boom Corridors,” UTIAS Technical Note

168 , October, 1971.
17Committee S1, Acoustics, “Method for Calculation of the Absorption of Sound by the Atmosphere, Annex C,” ANSI

Standard S1.26-1995, American National Standards Institute, New York, NY, September 1995.
18Lyness, J. N., “Numerical Algorithms Based on the Theory of Complex Variables,” Proceedings of the ACM 22nd National

Conference, 1967, pp. 124–134.
19Lyness, J. N. and Moler, C. B., “Numerical Differentiation of Analytic Functions,” SIAM Journal on Numerical Analysis,

Vol. 4, 1967, pp. 202–210.
20Hosder, S. and Bettis, B., “Uncertainty and Sensitivity Analysis for Reentry Flows with Inherent and Model-Form

Uncertainties,” Journal of Spacecraft and Rockets, Vol. 49, No. 2, 2012, pp. 193–206.
21Bettis, B., Hosder, S., and Winter, T., “Efficient Uncertainty Quantification in Multidisciplinary Analysis of a Reusable

Launch Vehicle,” AIAA 2011-2393, April 2011.
22Hosder, S., Walters, R. W., and Balch, M., “Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic

Computational Fluid Dynamics,” AIAA Journal , Vol. 48, No. 12, 2010, pp. 2721–2730.
23Witteveen, J. A. S. and Bijl, H., “Efficient Quantification of the Effect of Uncertainties in Advection-Diffusion Problems

Using Polynomial Chaos,” Numerical Heat Transfer , Vol. 53, No. 5, 2008, pp. 437–465.
24Han, D. and Hosder, S., “Inherent and Model-Form Uncertainty Analysis for CFD Simulation of Synthetic Jet Actuators,”

AIAA 2012-0082, Jan. 2012.
25Eldred, M. S., “Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty

Analysis and Design,” AIAA 2009-2274, May 2009.
26Ghanem, R. G. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.
27West IV, T. K., Hosder, S., and Johnston, C. O., “Multi-Step Uncertainty Quantification Approach Applied to Hypersonic

Reentry Flows,” Journal of Spacecraft and Rockets, Vol. 51, No. 1, 2014, pp. 296–310.
28Hosder, S., Walters, R. W., and Balch, M., “Efficient Sampling for Non-Intrusive Polynomial Chaos Applications with

Multiple Uncertain Input Variables,” AIAA 2007-1939, April 2007.

20 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
2,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
82

 



29Lockwood, B. and Mavriplis, D., “Gradient-Based Methods for Uncertainty Quantification in Hypersonic Flows,” Computers
and Fluids, Vol. 85, No. 1, Oct. 2013, pp. 27–38.

30Roderick, O., Anitescu, M., and Fischer, P., “Polynomial Regression Approaches Using Derivative Information for
Uncertainty Quantification,” Nuclear Science and Engineering, Vol. 164, No. 2, 2010, pp. 122–139.

31Doostan, A. and Owhadi, H., “A non-adapted sparse approximation of PDEs with stochastic inputs,” Journal of
Computational Physics, Vol. 230, No. 8, 2011, pp. 3015–3034.

32Yang, A., Ganesh, A., Sastry, S., and Ma, Y., “Fast L1-Minimization Algorithms and An Application in Robust Face
Recognition: A Review,” Tech. Rep. UCB/EECS-2010-13, EECS Department, University of California, Berkeley, Feb 2010.

33Asif, M. S. and Romberg, J., “Fast and Accurate Algorithms for Re-Weighted l1-Norm Minimization,” IEEE Transactions
on Signal Processing, Vol. 61, No. 23, 2013, pp. 5905–4916.

34Nielsen, E. J. et al., “FUN3D: Fully Unstructured Navier-Stokes,” http://fun3d.larc.nasa.gov/, accessed April 2015.
35Nielsen, E. J., Diskin, B., and Yamaleev, N. K., “Discrete Adjoint-Based Design Optimization of Unsteady Turbulent

Flows on Dynamic Unstructured Grids,” AIAA Journal , Vol. 48, No. 6, 2010, pp. 1195–1206.
36Nielsen, E. and Diskin, B., “Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured

Grids,” AIAA Journal , Vol. 51, No. 6, June 2013, pp. 1355–1373.
37Nielsen, E. J. and Jones, W. T., “Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint

Method,” Mathematical Modeling of Natural Phenomena, Vol. 6, No. 3, 2011, pp. 141–165.
38Jones, W. T., Nielsen, E. J., and Park, M. A., “Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation

for Sonic Boom Prediction,” AIAA Paper 2006-1150, Jan. 2006.
39Park, M. A., Lee-Rausch, E. M., and Rumsey, C. L., “FUN3D and CFL3D Computations for the First High Lift Prediction

Workshop,” AIAA Paper 2011-936, Jan. 2011.
40Kleb, W. L., Nielsen, E. J., Gnoffo, P. A., Park, M. A., and Wood, W. A., “Collaborative Software Development in

Support of Fast Adaptive Aerospace Tools (FAAST),” AIAA Paper 2003-3978, June 2003.
41Pirzadeh, S., “Three-Dimensional Unstructured Viscous Grids by the Advancing-Layers Method,” AIAA Journal , Vol. 34,

No. 1, 1996, pp. 43–49.
42Campbell, R. L., Carter, M. B., Deere, K. A., and Waithe, K. A., “Efficient Unstructured Grid Adaptation Methods for

Sonic Boom Prediction,” AIAA Paper 2008-7327, Aug. 2008.
43Park, M. A., “Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework,” AIAA 2011-3337, June

2011.
44Samareh, J. A., “Aerodynamic Shape Optimization based on free-form deformation,” AIAA Paper 2004-4630, Sept. 2004.
45Gill, P. E., Murray, W., and Saunders, M., “SNOPT: Software for Large-Scale Nonlinear Programming,” http://www.

sbsi-sol-optimize.com/manuals/SNOPTManual.pdf, accessed June 2013.
46Stevens, S., “Perceived level of noise by Mark VII and decibels(E),” Journal of the acoustical society of America, Vol. 51,

No. 2, 1972, pp. 575–601.
47Sullivan, B. M., Klos, J., Buehrle, R. D., McCurdy, D. A., and Edward A. Haering, J., “Human Response to Low-Intensity

Sonic Booms Heard Indoors and Outdoors,” NASA TM 2010-216685, 2010.

21 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ju
ne

 2
2,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
82

 

http://fun3d.larc.nasa.gov/
http://www.sbsi-sol-optimize.com/manuals/SNOPT Manual.pdf
http://www.sbsi-sol-optimize.com/manuals/SNOPT Manual.pdf

	Introduction and Motivation
	Extension to Existing Theory
	Differentiating Atmospheric Properties
	Differentiating Atmospheric Absorption and Relaxation Effects
	Differentiating Longitudinal and Lateral Ranges
	Differentiating Ray Tube Areas
	Demonstration Example

	Verification of Adjoint Sensitivities
	Sensitivity of Ranges to Temperature Profile
	Sensitivity of Ray Tube Area to Temperature Profile
	Sensitivity of Boom Loudness on Ground to Atmospheric Profiles

	Robust Design via Polynomial Chaos
	Adjoint-Based Robust Design Under Aleatory Uncertainty
	Point-Collocation Non-intrusive Polynomial Chaos
	General Approach to Point-Collocation
	Gradient-Enhanced Point-Collocation
	Sparse Approximation

	Moments and Design Variable Sensitivities

	CFD Integration
	Optimization Problem and Setup
	Results and Discussion
	Deterministic Optimization
	Robust Design Optimization

	Summary

